
Assembly lines for picking

fruits/vegetables

Daniel MORARIU

Ion MIRONESCU

1

July 25 – August 07, 2022 - Melsom High School, Sandefjord, Norway

✓ Modeling and simulation on the ADOxx platform:
➢ Short introduction in meta-modeling languages and ADOxx .
➢ Bee-Up tool for modeling.
➢ Modeling CPS components

➢ Controlling CPS components

✓ Interfacing with cyber-physical systems (CPS)
➢ Architecture of the combined systems (Bee-Up + CPS)
➢ ADOxx/Bee-Up interfaces with cyber-physical systems
➢ AdoScript commands and feedback
➢ Developing a command-and-control model in Bee-up

✓ Developing practical application
➢ Developing an application for the robotic arm (DoDot).
➢ Developing an application for the mobile robot (mBot).

2

Contents:

3

Why modeling?

https://automatorobotics.com/

✓ ADOxx is the meta-modelling development and configuration platform for

implementing modelling methods.

✓ Why modeling?

✓ If the object you want to create or change is simple, then you can do it directly.

✓ For complex systems that are likely to change over time, you need a model.

✓ “Without explicit modelling there is a high risk that the implementation is not what is

intended.” (John Zachmann, 2012)

✓ Conceptual modelling

✓ the modelling language that describes the syntax, semantics and notation.

✓ the modelling procedure that describe how to create valid models.

✓ algorithms and mechanisms that provide “functionality to use and evaluate” models

described by a modelling language.

4

ADOxx as conceptual modeling language

✓ „Conceptual modelling is the activity of formally describing some aspects of the physical

and social world around us for the purposes of understanding and communication.“

Mylopoulos (1992) Conceptual modeling and Telos1

5

ADOxx as conceptual modeling language

I. Analysis: Says what is.

The model provides a

- description of the phenomena of interest,

- analysis of relationships among those constructs,

- the degree of generalizability in constructs and relationships

- the boundaries within which relationships, and observations hold.

II. Explanation: Says what is, how, why, when, and where.

The model provides an explanation of how, why, and when things happened, relying on varying views
of causality methods for argumentation. This explanation usually promotes greater understanding or
insights by others into the phenomena of interest.

III. Prediction: Says what is and what will be.

The model states what will happen in the future if certain preconditions hold. The degree of certainty in
the prediction is expected to be only approximate or probabilistic.

IV. Explanation and prediction: Says what is, how, why, when, where, and what will be.

The model provides predictions and has both testable propositions and causal explanations.

V. Design and action: Says how to do something.

The model gives explicit prescriptions (e.g., methods, techniques, principles of form and function) for
constructing an artifact.

6

Conceptual Modelling Purpose - Dimensions

✓ Simplification
✓Withdrawing or removing

something

✓ Leaving out of consideration one
or more

✓Generalization
✓ Formulating general concepts by

abstracting common properties of
instances

✓A general concept formed by
extracting

7

Abstraction is the key to Modelling

Hybridizes several commonly used modelling languages in one

prototypical implementation.

BPMN – Business Process Model and Notation

EPC – Event-driven Process Chains

ER – Entity Relationship

-

UML – Unified Modeling Language

Petri Nets

9

What is the Bee-Up tool for modeling

Actual Model Types:

✓ Represents a workflow or a process.

✓ Can be defined as a diagrammatic representation of an
algorithm, a step-by-step approach to solving a task.

✓ UML activity diagrams and Drakon-charts can be extensions of
the flowchart.

✓ Flowchart Types
✓Document flowcharts, showing controls over a document-flow through

a system.

✓Data flowcharts, showing controls over a data-flow in a system.

✓System flowcharts, showing controls at a physical or resource level.

✓Program flowchart, showing the controls in a program within a
system.

10

Flowchart in Bee-Up

11

Bee-Up Overview

Flowchart

12

Start Terminal

Activity

Input/ Output

Predefined

Function

Decision

Flowline

End

Terminal

Comment

Start terminal block
Allows us to specify a start of a program or a function

 Description tab

 Name

 Execution tab

 Required variables

 Returned variables

Activity / Operation block
Allows us to specify a command for the robot

 Description

 Name

 Execution

 Activated

 Operation code

Decision block
Allows us to test a condition and follow two different directions

 Description

 Name

 Execution

 Check expression

Follow line / subsequent block
Allows us to specify the value of the condition to follow a specific branch

 Flowchart properties

 Expression result

Predefined functions / external operations block
Allows us to call a specific implemented function

 Description

 Name

 Activated

 External type -> Model

 Model

 Start point – select the called model

 Passed variables

Models for Runtime - Used Models

• Available

capabilities

– Reset

– Move to a

specific

position

– Grab on (Pick

up at position)

– Grab off (Drop

off at position)

18

Modeling/Controlling CPS components:

19

Bee-Up
command

WiFi/specific
IP

RasberyPiDoBot

RaspberyPi

✓ HTTP_SEND_REQUEST (str_url)
str_method:string
map_reqheaders:map
str_reqbody:string
val_respcode:reference
map_respheaders:reference
str_respbody:reference

✓ str_url – the URL that should be contacted provided as a string

✓ str_method – the HTTP method that should be sent with the request.
(Usually POST)

✓ ap_reqheaders – the headers that should be sent with the request as
a map.

✓ val_respcode – a reference variable that will contain an integer with
the response code.

✓ map_respheaders – a reference variable that will contain a map with
the headers of the response.

✓ str_respbody / arr_respbody – a reference variable that will hold
the body of the response

20

ADOxx/Bee-Up interfaces with cyber-physical systems

21

AdoScript Commands and feedback

✓ VIEWBOX opens a view box to display longer text messages.

CC "AdoScript" VIEWBOX text:strValue [title:strValue] [fontname:strValue]

[fontheight:intValue]

✓ EDITBOX opens a box where the user can edit text.

CC "AdoSript" EDITBOX text:strValue [title:strValue] [oktext:strValue]

[fontname:strValue] [fontheight:intValue] [fileeditor].

✓ LISTBOX opens a box where the user can select values of a list of values.

CC "AdoScript" LISTBOX entries:strValue [toksep:strValue]

[selection:strValue] [title:strValue]

[boxtext:strValue] [oktext:strValue]

[w:intValue h:intValue] [extra:{ Extra }].

More commands: https://www.adoxx.org/AdoScriptDoc/

https://www.adoxx.org/AdoScriptDoc/

✓ DoBot – list with all commands and a short description

✓ web address http://10.14.10.253:8080/dobot/ui/#/

✓ moveToPosition x,y,z

✓ moveToHomePosition

✓ turnOnSuctionCup

✓ TurnOffSuctionCup

✓ getPosition

✓ Working DoBot address: http://10.14.10.253:8080/dobot/api/operation

✓ Example move to x=200, y=0, z=0:

HTTP_SEND_REQUEST

("http://10.14.10.253:8080/dobot/api/operation/moveToPosition ?x=200&y=0&z=0")

str_method:("POST") map_reqheaders:(map_headers)

str_reqbody:("") val_respcode:val_httpcode
map_respheaders:map_respheaders str_respbody:str_respbody

22

Developing an application for the DoBot robotic arm

http://10.14.10.253:8080/dobot/ui/#/
http://10.14.10.253:8080/dobot/api/operation/

24

DoBot coordinates

https://forum.dobot.cc/t/coordinates-and-gripper-range-for-ptpcmd-in-dobot-magician/203/4

25

DOBOT in action

✓ mBot – list with all commands and a short descriptions

✓ Using the web interface http://10.14.10.252:8080/mBot/ui/

✓ mBot API for Line Following – need to specify the speed (between 50-200)

✓ moveStraight – moves until both sensors are out of line

✓ turnRight – moves until right sensor is on the line

✓ turnLeft – moves until left sensor is on the line

✓ jumpGap – moves until both sensors are on the line

✓ mBot Movement Operation – need to specify the speed and duration in seconds

✓ moveForward – moves forward for a period

✓ moveBackward – moves backward for a period

✓ turnRight – turn right a specified period

✓ turnLeft – turn left a specified period

26

Developing an application for the mobile robot.

http://10.14.10.252:8080/mBot/ui/

✓ mBot – list with all commands and a short description

✓ Using the web interface http://10.14.10.252:8080/mBot/ui/

✓ mBot API for Obstacle Avoidance – moves until it encounters an obstacle at the

minimum distance specified (the sensor specification 5-80 cm)

✓ moveForwardObstacle – move forward until the obstacle at the specified distance is

met.

✓ moveBackwardObstacle – move backward in order to increase the distance from the

met obstacle.

✓ turnRightObstacle –move in right direction until the obstacle disappears

✓ turnLeftObstacle – move in the left direction until the obstacle disappears

✓ Working mBot address: http://10.14.10.252:8080/mBot/api/

27

mBot commands

http://10.14.10.252:8080/mBot/ui/
http://10.14.10.252:8080/mBot/api/

28

mBot in action

